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Abstract: An Orchestrator coordinates and controls 
computations at parallel and sequential computing nodes. 
Matrix inversion is the need of many scientific applications. 
The paper presents a design and implementation of an 
Orchestrated framework named InverseOrchestra. The 
InverseOrchestra is finding the faster large matrix inversion 
through Orchestration. The InverseOrchestra is using 
Cramer’s rule for finding inverse of generalized matrix. The 
extension of framework named InverseOrchestraE also has 
been presented. It has been proved theoretically and 
practically that InverseOrchestra is much faster than 
Conventional approach and InverseOrchestraE is faster than 
InverseOrchestra. 
 

1. INTRODUCTION: 
Matrix manipulation often requires in science and 
engineering. There are many areas like signal processing, 
communications, parameter optimization, which include 
the problems which requires solving to matrix inversion. 
The matrix inversion is avoided by most numerical analyst 
[1]. This is because inversion is normally more time 
consuming, and less stable. However, in some practical 
situations the matrix inversion is compulsorily required. 
The application domain of matrix inversion includes: 
Wiener and Kalman filtering [2], all similarity 
transformations, statistics [3], eigenvalue-related problems 
[4], super- conductivity computation, in power engineering 
[5] etc. 
There are a variety of methods for matrix inversion. Many 
parallel algorithms for matrix inversion and related 
problems (LSE, memory multiplication and determinant) 
have been proposed [1] [6] [7]. In practice, the most used 
algorithms for solving inverse of a matrix are based on 
Gaussian elimination with pivoting, block Gaussian 
elimination, and their modifications.  
The paper presents the orchestrated [8-11] framework for 
matrix inversion through Cramer’s rule. The reason behind 
choosing the Cramer’s rule is that it provides determinant 
of matrix and   adjugate [12] matrix of input matrix also. 
There are numerous applications of adjugate matrix [13, 
14] also.  
Let the input matrix A is   a nonsingular real square matrix 
[15], Then by Cramer’s rule A-1 = adj A / |A| 
The organization of paper is as follows: Section 2 is 
describing the conventional approach to find the matrix 
inversion, Section 3 is presenting the InverseOrchestra, and 
Section 4 is showing the extension of InverseOrchestra, 
Section 5 consists of implementation procedure, section 6 
is showing results and section 7 is giving the conclusion of 
this paper. 
 

2. CONVENTIONAL APPROACH TO FIND INVERSE OF 

MATRIX THROUGH CRAMER’S RULE: 
To represent the conventional approach two functions 
determinant (f1) and minor (f2)) have been made. We are 
assuming that time taken by both the functions are same.  
For finding the inverse of a given matrix the invoking 
sequences of functions are shown in Table1.  In Table 1 a 
sequel is showing the invoking and responding tine of any 
function.  
In sequel 1 the f1 will be called for A, The responding time 
of f1 is ∆t, so it will respond at t1+∆t. 
After getting response from f1, f2 will be invoked at t2, in 
equation form it can be written as ݐଶ = tଵ	 +     (1)      ݐ∆

  
At t3, f1 will be invoked for getting determinant of M11. t3 
can be evaluated by following time relation ݐଷ = tଶ +   (2)      ݐ∆

 
Putting the value of t2 from time relation 1 to time relation 2 ݐଷ = ଵݐ +          (3)     ݐ∆2

------------------- 
ݐ ------------------- = ଵݐ + ሺ݊ − 1ሻ∆ݐ      (4) 

 
TABLE 1 
 

Sequel 
Number 

Time Instances 
f1 f2 Invoke 

Function 
Get 

Response 
ଵݐ 1 ଵݐ +   |A| ݐ∆
ଶݐ 2 ଶݐ  +  M11  ݐ∆
ଷݐ 3 ଷݐ  +   |M11| ݐ∆
ସݐ 4 ସݐ +  M12  ݐ∆
ହݐ 5 ହݐ  +   |M12| ݐ∆
ݐ 6 ݐ +  M13  ݐ∆
ݐ 7 ݐ  +   |M13| ݐ∆
- - - - - 
- - - - - 

k-2 ݐଶమିଶ ݐଶమିଶ +  Mnn-1  ݐ∆
k-1 ݐଶమିଵ ݐଶమିଵ +   |Mnn-1| ݐ∆
K ݐଶమ ݐଶమ +  Mnn  ݐ∆

K+1 ݐଶమାଵ ݐଶమାଵ +   |Mnn| ݐ∆
 
k is the number of iteration for getting Matrix of minors of 
A (M) and calculated by the relation   k=2n2. 
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The time relation 4 presents that  ݐమ				 > 	 				మିଵݐ > 				మିଶݐ > ⋯ > 		ସݐ > 				ଷݐ > 				ଶݐ >        (5)				ଵݐ
 

Which shows that sequel 2 will be invoked after getting 
response from sequel 1; sequel 3 will be invoked after 
getting response from sequel 2. Sequel n will be invoked 
after getting response from sequel n-1 and so on. All sequels 
are sequentially initiated services. 
At time  ݐଶమାଵ +  we will get M and |A|. The A-1 will    ݐ∆
be calculated by using M and |A|. As M and |A| have been 
calculated, so the time taken by next calculation for finding 
A-1 can be ignored and the time for calculating A-1 is given 
by  ݐଶమାଵ				 +  (6)      ݐ∆
 
By putting the value of tn from time relation 4 into 6 
 tଵ + ሺ2nଶሻ∆ݐ  (7)     ݐ∆	+
 
 

3. PROPOSED FRAMEWORK: 
Figure 1 shows the framework for InverseOrchestra. It 
divides overall work into two services. Determinant service 
(S1) and matrix minor service (S2). The services are running 
on different nodes. Service S1 computes the determinant of 
given matrix; service S2 computes minor matrix for given 
row and column number. InverseOrchestra is coordinating 
software for the sequence of operations of two services. 
InverseOrchestra interacts with user and manages 
exceptions also.  
 

 
Fig. 1: InverseOrchestra 

 
Timings of the sequences for Orchestration are based on 
following assumptions: the responding time (∆t) of S1and S2 
are same.  
The number of iteration for getting Matrix of minors of A is 
j and calculated by the relation   j= n2.  
Table 2 gives the timings of the sequences for 
computational services. The sequels described by the Table 
2 show that S1 and S2 are parallel initiated services for 
different inputs.  
 
 

TABLE 2 

Sequel 
Number 

Time Instances 
Invoke  
S1 for 

Invoke 
S2 for 

 
 

Invoke 
Service 
at time 

Get 
Response 

at time 
1 t1 t1 + ∆t | A| M11 
ଶݐ ଶݐ 2 +  M11| M12| ݐ∆
ଷݐ 3 ଷݐ +  M12| M13| ݐ∆
ସݐ 4 ସݐ +  M13| M14| ݐ∆
ହݐ 5 ହݐ  +  M14| M21| ݐ∆
- - - - - 
- - - - - 
j ݐమ ݐమ +  Mnn-1| Mnn| ݐ∆

j+1 ݐమାଵ 
మାଵݐ +  ݐ∆

 
|Mnn|  

 
At time  ݐଶమାଵ +  .|InverseOrchestra will get M and |A   ݐ∆
The A-1 will be calculated by using M and | A|. As M and 
|A| have been calculated, so the time taken by next 
calculation for finding A-1 can be ignored and the time for 
calculating A-1 is given by  

				మାଵݐ  +  (8)    ݐ∆
 

By putting the value of tn from time relation 4 into 8 
 
  tଵ + ሺnଶሻ∆ݐ  (9)   ݐ∆	+
 
 

4. EXTENSION IN PROPOSED FRAMEWORK: 
In InverseOrchestra we have assumed that time taken by 
both the services (S1 and S2) are same. But at the time of 
implementation it has been observed that time taken by S1 
is much more than S2.The extended version  
InverseOrchestraE of  InverseOrchestra  has been presented  
which orchestrate the four services(three determinant and 
one minor )for getting inverse of a matrix through Cramer’s 
rule. The InverseOrchestraE is initiating all services in 
parallel.  
The InverseOrchestraE is based on the assumption that it 
can get three minors from S2 in the responding time of S1. 
Table3 is showing the sequence of service invoking and 
response. Here αt is the responding time of S2 . S1a, S1b and 
S1c. are three determinant services and ∆t is the responding 
time of these three determinant services.  
In sequel 1 at time t1 InverseOrchestraE will invoke S2 for 
getting M11 and S1a for getting |A|.As ∆t is >= 3αt, so S2 will 
respond at T1+ αt, but S1a won’t respond, 
InverseOrchestraE will invoke S2 at t1+ αt for M12 and will 
get response at t1+2αt, again in same sequel 
InverseOrchestraE will invoke S2 for M13 at t1+2αt and will 
get response at t1+3αt,   S1a will respond at t1+∆t. 
After sequel 1 InverseOrchestra will have M11, M12 and 
M13, so in sequel 2 at time t2 it will invoke S2 for M14, S1a 
for |M11| and S1b for |M12| and S1c for |M13|. It means it is 
initiating four services in parallel. S2 will generate three 
minors (M14, M15 and M16) in the responding time of S1.   
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Table 3 

Sequel 
Number 

Time Instances 
Invoke 
S2 for 

Time Instances 
Invoke 
S1a for 

Invoke 
S1b for 

Invoke 
S1c for Invoke S2 

at time 

Get Response 
From S2 at 

time 

Invoke S1  

at time 

Get response 
From S1 at 

time 

1 t1 t1 + αt M11 
t1 t1 + ∆t |A|    t1 + αt t1 + 2αt M12 

 t1 + 2αt t1 +3αt M13 

2 t2 t2 + αt M14 
t2 t2 + ∆t |M11| |M12| |M13|  t2+ αt t2+ 2αt M15 

 t2 + 2αt t2 +3αt M16 
 - - - 

- - - - -  - - - 
 - - - 

j 
				⎦మ/ଷ⎣ݐ + −ߚ 1 

⎦మ/ଷ⎣ݐ + ߚ −1+ αt 
Mnn-2 

మ/ଷݐ + −ߚ 1 

ଶమ/ଷݐ + ߚ −1 +∆t 
|Mnn-5| |Mnn-4| |Mnn-3| 

 
				⎦మ/ଷ⎣ݐ + ߚ −1+ αt 

⎦మ/ଷ⎣ݐ +  +ߚ

2αt 
Mnn-1      

 
				⎦మ/ଷ⎣ݐ +  +ߚ

2αt 

⎦మ/ଷ⎣ݐ +  +ߚ

3αt 
Mnn      

j+1    ݐమ/ଷ +  1+ߚ
 మ/ଷݐ

+β+1+∆t 
|Mnn-2| |Mnn-1| |Mnn| 

 
The same sequence will be followed in next sequels.. For 
getting M the total iterations will be n2/3 +β, Where β = 0, 
for n is such that n%3=0; and β=1 for n%3 ≠0. j= n2/3 +β. 
At time  ݐమ/ଷ				  +β+1+∆t   InverseOrchestraE will get M and 

|A|. The A-1 will be calculated by using M and | A|. As M 
and |A| have been calculated, so the time taken by next 
calculation for finding A-1 can be ignored and the time for 
calculating A-1 is given by      ݐమ/ଷ				  +β+∆t     (10) 

By putting the value of tn from time relation 4 into 10 ݐଵ + ሺ݊ଶ/3 − 1ሻ∆ݐ + β+ 1 + ∆t	  (11) 
 
From time relation 7, 9 and 11 it is clear that time taken by 
Conventional approach is approximately double from 
InverseOrchestra and time taken by InverseOrchestraE is 
approximately 1/3 from the conventional approach. 
 

5. IMPLEMENTATION:  
The framework InverseOrchestra and InverseOrchestraE 
have been developed using Remote Method Invocation 
(RMI) and extensive use of multithreading in java. For 
invoking the services from remote machines the RMI has 
been used. For initiating services in parallel or sequentially 
the use of multithreading has been done. 
Fig. 2  is showing the implementation structure of 
InverseOrchestra.  Two servers RMIServer for S1 and 
RmiServerCo for S2 have been developed.  RMIClient is 
playing the role of InverseOrchestra. It has stub object of 
the servers and servers have the skeleton object of 
RMIClient. The stub object consists of an identifier of the 
remote object to be used, an operation number describing 

the method to be called and the marshalled parameters. It 
sends all these information to the server. The job of 
skeleton object at the server side are unmarshalling the 
parameters, calling the desired method on the real object 
lying on the server, capturing the return value or exception 
of the call on the server, again marshalling the return value, 
sending a package consisting of the value in the marshalled 
form back to the stub on the RMIClient. At RMIClient Two 
thread have been developed to call two servers in parallel 
or in sequential manner. For managing the sequence of 
operations synchronized methods have been used. 
The experimental setup was on single machine, two local 
hosts were made for calculating the results. The 
configuration of machine was intel (R) core (TM) 2 Duo 
CPU with 2 GB RAM and 2.93 GHz clock frequency.  

 
 

Fig2. InverseOrchestra Implementation 

 

 

RMIServer

 

 

RmiServerC

InverseOrchestra  (RMIClient) 
Interface Classes: 
RMIServer (S1) 
RmiServerCo(S2) 

Stub Classes: 
RMIServer (S1) 
RmiServerCo(S2) 

Skeleton  
Object 

Skeleton  
Object 
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Fig. 3 is showing the implementation structure for 
InverseOrchestraE. Four servers RMIServer for S1a, 

RMIServer_2 for S1b, RMIServer_3 for S1c and 
RmiServerCo for S2 have been developed.  RMIClient is 
playing the role of InverseOrchestraE.  
RMIClient have four threads two manage the sequence of 
operations. An array of minors of size 3 has been made at 
the RMIClient. It can store three minors in the mean time 
of determinant calculation. It diverts the calculated minor 
to any of the server whichever is free. 
The experimental setup was on three machines, one local 
host for S2 has been made. The configuration of machines 
was intel (R) core (TM) 2 Duo CPU with 2 GB RAM and 
2.93 GHz clock frequency.  
  

 
Fig. 3 InverseOrchestraE Implementation 

 
 
 
 

6. RESULTS: 
Table 4 is showing the speed of two frameworks 
InverseOrchestra, and InverseOrchestraE with reference to 
Conventional approach. From Table 4 it is clear that 
average speedup of InverseOrchestra is more 3 from the 
conventional approach and average speedup of 
InverseOrchestraE is more than 20 from the conventional 
approach. From table it is also clear that the response of 
InverseOrchestraE was very good up to 50×50 matrix, after 
that the timing calculation of minor gets apparent and 
RMIClient has to wait for minors to calculate the 
determinant. By increasing number of minor servers the 
response of InverseOrchestraE can be improved further. 
Chart 1 is showing the comparison between three 
approaches. Chart2 and Chart3 are showing the comparison 
of conventional approach with InverseOrchestra and 
InverseOrchestraE respectively. 
 
Table 4  
 

 
 

 
                      Chart 1 

 
 

 RMIServer RMIServer_3 

Orchestrator  (RMIClient) 

Interface: 
RMIServer (Determinant1) 
RMIServer_2(Determinant2) 
RMIServer_3(Determinant3) 
RmiServerCo(Minor) 

Stub: 
RMIServer (Det1) 
RMIServer_2 (Det2) 
RMIServer_3 (Det3) 
RmiServerCo(Minor) 

Invoke Det1, Det2 and Det3 in parallel for M11, 
M12 and  M13  whichever is free 

Skeleton 
Object 

Skeleton 
Object 

RmiServerCo 

Skeleton 
Object

RMIServer_2 

Skeleton 
Object 
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1 10×10 3.567 42.812 
2 20×20 3.389 49.873 
3 30×30 3.918 41.168 
4 40×40 2.662 19.575 
5 50×50 3.717 18.823 
6 60×60 3.847 13.725 
7 70×70 3.519 8.880 
8 80×80 2.945 5.716 
9 90×90 3.101 4.790 

10 
100×10

0 
3.722 4.332 

Average 
Speedup 

3.439 20.969 
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Chart 2 

 
Chart 3 

 
 
 
 

7. CONCLUSION: 
Two frameworks InverseOrchestra and InverseOrchestraE 
have been presented and implemented. The frameworks are 
utilizing the property of Orchestration to speed up the 
matrix inversion. The method used for matrix inversion is 
Cramer’s rule. The implementation is based on RMI and 
multithreading in java. The experimental results are much 
closer to theoretically derived time relations. Intermediately 
calculations done by frameworks such as determinant and 
adjugate matrix are also very useful in many applications. 
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