
Inverse Orchestra: An approach to find faster
solution of matrix inversion through Cramer’s rule

Shweta Agrawal , Rajkamal

School of Computer Science & Information Technology,
DAVV, Indore (M.P.), India

Abstract: An Orchestrator coordinates and controls
computations at parallel and sequential computing nodes.
Matrix inversion is the need of many scientific applications.
The paper presents a design and implementation of an
Orchestrated framework named InverseOrchestra. The
InverseOrchestra is finding the faster large matrix inversion
through Orchestration. The InverseOrchestra is using
Cramer’s rule for finding inverse of generalized matrix. The
extension of framework named InverseOrchestraE also has
been presented. It has been proved theoretically and
practically that InverseOrchestra is much faster than
Conventional approach and InverseOrchestraE is faster than
InverseOrchestra.

1. INTRODUCTION:
Matrix manipulation often requires in science and
engineering. There are many areas like signal processing,
communications, parameter optimization, which include
the problems which requires solving to matrix inversion.
The matrix inversion is avoided by most numerical analyst
[1]. This is because inversion is normally more time
consuming, and less stable. However, in some practical
situations the matrix inversion is compulsorily required.
The application domain of matrix inversion includes:
Wiener and Kalman filtering [2], all similarity
transformations, statistics [3], eigenvalue-related problems
[4], super- conductivity computation, in power engineering
[5] etc.
There are a variety of methods for matrix inversion. Many
parallel algorithms for matrix inversion and related
problems (LSE, memory multiplication and determinant)
have been proposed [1] [6] [7]. In practice, the most used
algorithms for solving inverse of a matrix are based on
Gaussian elimination with pivoting, block Gaussian
elimination, and their modifications.
The paper presents the orchestrated [8-11] framework for
matrix inversion through Cramer’s rule. The reason behind
choosing the Cramer’s rule is that it provides determinant
of matrix and adjugate [12] matrix of input matrix also.
There are numerous applications of adjugate matrix [13,
14] also.
Let the input matrix A is a nonsingular real square matrix
[15], Then by Cramer’s rule A-1 = adj A / |A|
The organization of paper is as follows: Section 2 is
describing the conventional approach to find the matrix
inversion, Section 3 is presenting the InverseOrchestra, and
Section 4 is showing the extension of InverseOrchestra,
Section 5 consists of implementation procedure, section 6
is showing results and section 7 is giving the conclusion of
this paper.

2. CONVENTIONAL APPROACH TO FIND INVERSE OF

MATRIX THROUGH CRAMER’S RULE:
To represent the conventional approach two functions
determinant (f1) and minor (f2)) have been made. We are
assuming that time taken by both the functions are same.
For finding the inverse of a given matrix the invoking
sequences of functions are shown in Table1. In Table 1 a
sequel is showing the invoking and responding tine of any
function.
In sequel 1 the f1 will be called for A, The responding time
of f1 is ∆t, so it will respond at t1+∆t.
After getting response from f1, f2 will be invoked at t2, in
equation form it can be written as ݐଶ = tଵ	 + (1) ݐ∆

At t3, f1 will be invoked for getting determinant of M11. t3
can be evaluated by following time relation ݐଷ = tଶ + (2) ݐ∆

Putting the value of t2 from time relation 1 to time relation 2 ݐଷ = ଵݐ + (3) ݐ∆2

ݐ ------------------- = ଵݐ + ሺ݊ − 1ሻ∆ݐ (4)

TABLE 1

Sequel
Number

Time Instances
f1 f2 Invoke

Function
Get

Response
ଵݐ 1 ଵݐ + |A| ݐ∆
ଶݐ 2 ଶݐ + M11 ݐ∆
ଷݐ 3 ଷݐ + |M11| ݐ∆
ସݐ 4 ସݐ + M12 ݐ∆
ହݐ 5 ହݐ + |M12| ݐ∆
ݐ 6 ݐ + M13 ݐ∆
ݐ 7 ݐ + |M13| ݐ∆
- - - - -
- - - - -

k-2 ݐଶమିଶ ݐଶమିଶ + Mnn-1 ݐ∆
k-1 ݐଶమିଵ ݐଶమିଵ + |Mnn-1| ݐ∆
K ݐଶమ ݐଶమ + Mnn ݐ∆

K+1 ݐଶమାଵ ݐଶమାଵ + |Mnn| ݐ∆

k is the number of iteration for getting Matrix of minors of
A (M) and calculated by the relation k=2n2.

Shweta Agrawal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3581-3585

www.ijcsit.com 3581

The time relation 4 presents that ݐమ				 > 	 				మିଵݐ > 				మିଶݐ > ⋯ > 		ସݐ > 				ଷݐ > 				ଶݐ > (5)				ଵݐ

Which shows that sequel 2 will be invoked after getting
response from sequel 1; sequel 3 will be invoked after
getting response from sequel 2. Sequel n will be invoked
after getting response from sequel n-1 and so on. All sequels
are sequentially initiated services.
At time ݐଶమାଵ + we will get M and |A|. The A-1 will ݐ∆
be calculated by using M and |A|. As M and |A| have been
calculated, so the time taken by next calculation for finding
A-1 can be ignored and the time for calculating A-1 is given
by ݐଶమାଵ				 + (6) ݐ∆

By putting the value of tn from time relation 4 into 6
 tଵ + ሺ2nଶሻ∆ݐ (7) ݐ∆	+

3. PROPOSED FRAMEWORK:
Figure 1 shows the framework for InverseOrchestra. It
divides overall work into two services. Determinant service
(S1) and matrix minor service (S2). The services are running
on different nodes. Service S1 computes the determinant of
given matrix; service S2 computes minor matrix for given
row and column number. InverseOrchestra is coordinating
software for the sequence of operations of two services.
InverseOrchestra interacts with user and manages
exceptions also.

Fig. 1: InverseOrchestra

Timings of the sequences for Orchestration are based on
following assumptions: the responding time (∆t) of S1and S2
are same.
The number of iteration for getting Matrix of minors of A is
j and calculated by the relation j= n2.
Table 2 gives the timings of the sequences for
computational services. The sequels described by the Table
2 show that S1 and S2 are parallel initiated services for
different inputs.

TABLE 2

Sequel
Number

Time Instances
Invoke
S1 for

Invoke
S2 for

Invoke
Service
at time

Get
Response

at time
1 t1 t1 + ∆t | A| M11
ଶݐ ଶݐ 2 + M11| M12| ݐ∆
ଷݐ 3 ଷݐ + M12| M13| ݐ∆
ସݐ 4 ସݐ + M13| M14| ݐ∆
ହݐ 5 ହݐ + M14| M21| ݐ∆
- - - - -
- - - - -
j ݐమ ݐమ + Mnn-1| Mnn| ݐ∆

j+1 ݐమାଵ
మାଵݐ + ݐ∆

|Mnn|

At time ݐଶమାଵ + .|InverseOrchestra will get M and |A ݐ∆
The A-1 will be calculated by using M and | A|. As M and
|A| have been calculated, so the time taken by next
calculation for finding A-1 can be ignored and the time for
calculating A-1 is given by

				మାଵݐ + (8) ݐ∆

By putting the value of tn from time relation 4 into 8

 tଵ + ሺnଶሻ∆ݐ (9) ݐ∆	+

4. EXTENSION IN PROPOSED FRAMEWORK:
In InverseOrchestra we have assumed that time taken by
both the services (S1 and S2) are same. But at the time of
implementation it has been observed that time taken by S1
is much more than S2.The extended version
InverseOrchestraE of InverseOrchestra has been presented
which orchestrate the four services(three determinant and
one minor)for getting inverse of a matrix through Cramer’s
rule. The InverseOrchestraE is initiating all services in
parallel.
The InverseOrchestraE is based on the assumption that it
can get three minors from S2 in the responding time of S1.
Table3 is showing the sequence of service invoking and
response. Here αt is the responding time of S2 . S1a, S1b and
S1c. are three determinant services and ∆t is the responding
time of these three determinant services.
In sequel 1 at time t1 InverseOrchestraE will invoke S2 for
getting M11 and S1a for getting |A|.As ∆t is >= 3αt, so S2 will
respond at T1+ αt, but S1a won’t respond,
InverseOrchestraE will invoke S2 at t1+ αt for M12 and will
get response at t1+2αt, again in same sequel
InverseOrchestraE will invoke S2 for M13 at t1+2αt and will
get response at t1+3αt, S1a will respond at t1+∆t.
After sequel 1 InverseOrchestra will have M11, M12 and
M13, so in sequel 2 at time t2 it will invoke S2 for M14, S1a
for |M11| and S1b for |M12| and S1c for |M13|. It means it is
initiating four services in parallel. S2 will generate three
minors (M14, M15 and M16) in the responding time of S1.

Shweta Agrawal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3581-3585

www.ijcsit.com 3582

Table 3

Sequel
Number

Time Instances
Invoke
S2 for

Time Instances
Invoke
S1a for

Invoke
S1b for

Invoke
S1c for Invoke S2

at time

Get Response
From S2 at

time

Invoke S1

at time

Get response
From S1 at

time

1 t1 t1 + αt M11
t1 t1 + ∆t |A| t1 + αt t1 + 2αt M12

 t1 + 2αt t1 +3αt M13

2 t2 t2 + αt M14
t2 t2 + ∆t |M11| |M12| |M13| t2+ αt t2+ 2αt M15

 t2 + 2αt t2 +3αt M16
 - - -

- - - - - - - -
 - - -

j
				⎦మ/ଷ⎣ݐ + −ߚ 1

⎦మ/ଷ⎣ݐ + ߚ −1+ αt
Mnn-2

మ/ଷݐ + −ߚ 1

ଶమ/ଷݐ + ߚ −1 +∆t
|Mnn-5| |Mnn-4| |Mnn-3|

				⎦మ/ଷ⎣ݐ + ߚ −1+ αt

⎦మ/ଷ⎣ݐ + +ߚ

2αt
Mnn-1

				⎦మ/ଷ⎣ݐ + +ߚ

2αt

⎦మ/ଷ⎣ݐ + +ߚ

3αt
Mnn

j+1 ݐమ/ଷ + 1+ߚ
 మ/ଷݐ

+β+1+∆t
|Mnn-2| |Mnn-1| |Mnn|

The same sequence will be followed in next sequels.. For
getting M the total iterations will be n2/3 +β, Where β = 0,
for n is such that n%3=0; and β=1 for n%3 ≠0. j= n2/3 +β.
At time ݐమ/ଷ				 +β+1+∆t InverseOrchestraE will get M and

|A|. The A-1 will be calculated by using M and | A|. As M
and |A| have been calculated, so the time taken by next
calculation for finding A-1 can be ignored and the time for
calculating A-1 is given by ݐమ/ଷ				 +β+∆t (10)

By putting the value of tn from time relation 4 into 10 ݐଵ + ሺ݊ଶ/3 − 1ሻ∆ݐ + β+ 1 + ∆t	 (11)

From time relation 7, 9 and 11 it is clear that time taken by
Conventional approach is approximately double from
InverseOrchestra and time taken by InverseOrchestraE is
approximately 1/3 from the conventional approach.

5. IMPLEMENTATION:
The framework InverseOrchestra and InverseOrchestraE
have been developed using Remote Method Invocation
(RMI) and extensive use of multithreading in java. For
invoking the services from remote machines the RMI has
been used. For initiating services in parallel or sequentially
the use of multithreading has been done.
Fig. 2 is showing the implementation structure of
InverseOrchestra. Two servers RMIServer for S1 and
RmiServerCo for S2 have been developed. RMIClient is
playing the role of InverseOrchestra. It has stub object of
the servers and servers have the skeleton object of
RMIClient. The stub object consists of an identifier of the
remote object to be used, an operation number describing

the method to be called and the marshalled parameters. It
sends all these information to the server. The job of
skeleton object at the server side are unmarshalling the
parameters, calling the desired method on the real object
lying on the server, capturing the return value or exception
of the call on the server, again marshalling the return value,
sending a package consisting of the value in the marshalled
form back to the stub on the RMIClient. At RMIClient Two
thread have been developed to call two servers in parallel
or in sequential manner. For managing the sequence of
operations synchronized methods have been used.
The experimental setup was on single machine, two local
hosts were made for calculating the results. The
configuration of machine was intel (R) core (TM) 2 Duo
CPU with 2 GB RAM and 2.93 GHz clock frequency.

Fig2. InverseOrchestra Implementation

RMIServer

RmiServerC

InverseOrchestra (RMIClient)
Interface Classes:
RMIServer (S1)
RmiServerCo(S2)

Stub Classes:
RMIServer (S1)
RmiServerCo(S2)

Skeleton
Object

Skeleton
Object

Shweta Agrawal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3581-3585

www.ijcsit.com 3583

Fig. 3 is showing the implementation structure for
InverseOrchestraE. Four servers RMIServer for S1a,

RMIServer_2 for S1b, RMIServer_3 for S1c and
RmiServerCo for S2 have been developed. RMIClient is
playing the role of InverseOrchestraE.
RMIClient have four threads two manage the sequence of
operations. An array of minors of size 3 has been made at
the RMIClient. It can store three minors in the mean time
of determinant calculation. It diverts the calculated minor
to any of the server whichever is free.
The experimental setup was on three machines, one local
host for S2 has been made. The configuration of machines
was intel (R) core (TM) 2 Duo CPU with 2 GB RAM and
2.93 GHz clock frequency.

Fig. 3 InverseOrchestraE Implementation

6. RESULTS:
Table 4 is showing the speed of two frameworks
InverseOrchestra, and InverseOrchestraE with reference to
Conventional approach. From Table 4 it is clear that
average speedup of InverseOrchestra is more 3 from the
conventional approach and average speedup of
InverseOrchestraE is more than 20 from the conventional
approach. From table it is also clear that the response of
InverseOrchestraE was very good up to 50×50 matrix, after
that the timing calculation of minor gets apparent and
RMIClient has to wait for minors to calculate the
determinant. By increasing number of minor servers the
response of InverseOrchestraE can be improved further.
Chart 1 is showing the comparison between three
approaches. Chart2 and Chart3 are showing the comparison
of conventional approach with InverseOrchestra and
InverseOrchestraE respectively.

Table 4

 Chart 1

 RMIServer RMIServer_3

Orchestrator (RMIClient)

Interface:
RMIServer (Determinant1)
RMIServer_2(Determinant2)
RMIServer_3(Determinant3)
RmiServerCo(Minor)

Stub:
RMIServer (Det1)
RMIServer_2 (Det2)
RMIServer_3 (Det3)
RmiServerCo(Minor)

Invoke Det1, Det2 and Det3 in parallel for M11,
M12 and M13 whichever is free

Skeleton
Object

Skeleton
Object

RmiServerCo

Skeleton
Object

RMIServer_2

Skeleton
Object

0

200000

400000

600000

800000

1000000

1200000

Ti
m

e
(m

s)

Conventional

InverseOrchestra

InverseOrchestraE

S.No
.

Matrix
Size

Speedup
(Conventional/

InverseOrchestra
)

Speedup
(Conventional/

InverseOrchestraE
)

1 10×10 3.567 42.812
2 20×20 3.389 49.873
3 30×30 3.918 41.168
4 40×40 2.662 19.575
5 50×50 3.717 18.823
6 60×60 3.847 13.725
7 70×70 3.519 8.880
8 80×80 2.945 5.716
9 90×90 3.101 4.790

10
100×10

0
3.722 4.332

Average
Speedup

3.439 20.969

Shweta Agrawal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3581-3585

www.ijcsit.com 3584

Chart 2

Chart 3

7. CONCLUSION:
Two frameworks InverseOrchestra and InverseOrchestraE
have been presented and implemented. The frameworks are
utilizing the property of Orchestration to speed up the
matrix inversion. The method used for matrix inversion is
Cramer’s rule. The implementation is based on RMI and
multithreading in java. The experimental results are much
closer to theoretically derived time relations. Intermediately
calculations done by frameworks such as determinant and
adjugate matrix are also very useful in many applications.

REFERENCES:
[1] N.J. Higham , Accuracy and Stability of Numerical Algorithms,

SIAM, Philadelphia, 1996.
[2] Thomas Kailath, Ali H. Sayed, and Babak Hassibi, Linear

Estimation, Prentice-Hall, NJ, 2000.
[3] P. McCullagh and J.A. Nelder, Generalized Linear Models,

Chapmann and Hall, London, 1989.
[4] Ralph Byers, Solving the algebraic Riccati equation with the matrix

sign function, J. Linear Algebra and its Applications, Volume 85,
January 1987, pages 267-279.

 [5] Jun Qiang Wu; Bose A., Parallel solution of large sparse matrix
equations and parallel power flow, IEEE Transactions on Power
Systems, volume 10, Issue 3, August 1995,pages 1343,1349.

[6] M. Cosnard and D. Trystram, Parallel Algorithms and Architectures,
Blackwell North America, 1995.

[7] V. Kumar, A. Grama, A. Gupta, and G. Karypis , Introduction to
Parallel Computing. Design and Analysis of Algorithms, The
Benjamin/Cummings Publishing Company, 1994.

[8] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi and G. Zavattaro, JOLIE: a
Java Orchestration Language Interpreter Engine, Electronic Notes in
Theoretical Computer Science (ENTCS), June 2007, pages 19-33,

[9] N. Viswanadham and Kameshwaran,, Orchestrating a Network of
Activities in the Value Chain, 5th Annual IEEE Conference on
Automation Science and Engineering Bangalore, India, August 22-
25, 2009.

[10] Yinong Chen and Xiaoying Bai , On Robotics Application in Service
Oriented Architecture, The 28 international IEEE conference on
Distributed Computing Systems Workshops,2008,pages 551-556.

[11] Lavanya Ramakrishnan, Jeffrey S. Chase, Dennis Gannon, Daniel
Nurmi, Rich Wolski, Deadline-sensitive workflow orchestration
without explicit resource control, J. Parallel and Distributed
Computing, Volume 71, Issue 3, March 2011, pages 343-353.

[12] G.W. Stewart, On the adjugate matrix, J. Linear Algebra and its
applications, Volume 283, Issues 1–3, 1 November 1998, pages 151-
164.

[13] Elizabeth A. Cudney, Kioumars Paryani, Kenneth M. Ragsdell ,
Identifying Useful Variables for Vehicle Braking Using the Adjoint
Matrix Approach to the Mahalanobis-Taguchi System, J. Industrial
and Systems Engineering Volume . 1, Issue 4, 2008, pages 281-292.

[14] Chen Hui-ru; He Chun-lin, The Properties of Adjoint Matrix,
International Conference on Intelligence Science and Information
Engineering (ISIE), 2011, August 2011, pages 113-114.

[15] M. C. Pease “Methods of Matrix algebra “Academic Press, New
York, 1965.

0
200000
400000
600000
800000

1000000
1200000

Ti
m

e(
m

s)

Conventional

InverseOrchestra

0
200000
400000
600000
800000

1000000
1200000

Ti
m

e(
m

s)

Conventional

InverseOrchestraE

Shweta Agrawal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3581-3585

www.ijcsit.com 3585

